A Novel DBL-Domain of the P. falciparum 332 Molecule Possibly Involved in Erythrocyte Adhesion

نویسندگان

  • Kirsten Moll
  • Arnaud Chêne
  • Ulf Ribacke
  • Osamu Kaneko
  • Sandra Nilsson
  • Gerhard Winter
  • Malin Haeggström
  • Weiqing Pan
  • Klavs Berzins
  • Mats Wahlgren
  • Qijun Chen
چکیده

Plasmodium falciparum malaria is brought about by the asexual stages of the parasite residing in human red blood cells (RBC). Contact between the erythrocyte surface and the merozoite is the first step for successful invasion and proliferation of the parasite. A number of different pathways utilised by the parasite to adhere and invade the host RBC have been characterized, but the complete biology of this process remains elusive. We here report the identification of an open reading frame (ORF) representing a hitherto unknown second exon of the Pf332 gene that encodes a cysteine-rich polypeptide with a high degree of similarity to the Duffy-binding-like (DBL) domain of the erythrocyte-binding-ligand (EBL) family. The sequence of this DBL-domain is conserved and expressed in all parasite clones/strains investigated. In addition, the expression level of Pf332 correlates with proliferation efficiency of the parasites in vitro. Antibodies raised against the DBL-domain are able to reduce the invasion efficiency of different parasite clones/strains. Analysis of the DBL-domain revealed its ability to bind to uninfected human RBC, and moreover demonstrated association with the iRBC surface. Thus, Pf332 is a molecule with a potential role to support merozoite invasion. Due to the high level of conservation in sequence, the novel DBL-domain of Pf332 is of possible importance for development of novel anti-malaria drugs and vaccines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Duffy-Binding-Like Domain of Plasmodium falciparum Blood-Stage Antigen 332

Studies on Pf332, a major Plasmodium falciparum blood-stage antigen, have largely been hampered by the cross-reactive nature of antibodies generated against the molecule due to its high content of repeats, which are present in other malaria antigens. We previously reported the identification of a conserved domain in Pf332 with a high degree of similarity to the Duffy-binding-like (DBL) domains ...

متن کامل

Receptor-binding residues lie in central regions of Duffy-binding-like domains involved in red cell invasion and cytoadherence by malaria parasites.

Erythrocyte invasion by malaria parasites and cytoadherence of Plasmodium falciparum-infected erythrocytes to host capillaries are 2 key pathogenic mechanisms in malaria. The receptor-binding domains of erythrocyte-binding proteins (EBPs) such as Plasmodium falciparum EBA-175, which mediate invasion, and P falciparum erythrocyte membrane protein 1 (PfEMP-1) family members, which are encoded by ...

متن کامل

Disguising itself--insights into Plasmodium falciparum binding and immune evasion from the DBL crystal structure.

Duffy-binding like (DBL) domains are common to two different families of malaria proteins that are involved in parasite invasion of erythrocytes or cytoadhesion of infected erythrocytes. DBL domain crystal structures have recently been solved for two different erythrocyte binding ligands, EBA-175 and the Plasmodium knowlesi alpha Duffy binding protein. These structures reveal different mechanis...

متن کامل

Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum

Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which function...

متن کامل

The duffy-binding-like domain 1 of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a heparan sulfate ligand that requires 12 mers for binding.

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), present on the surfaces of parasitized red blood cells (pRBC), mediates rosetting, a virulent phenotype. Here, we show that pRBC specifically bind heparan sulfate (HS) and heparin onto their surfaces and that the rosetting ligand PfEMP1 specifically adheres to heparin-Sepharose when extracted from the surfaces of radioiodinated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007